The Sample Complexity of Optimizing a Convex Function
نویسندگان
چکیده
In this paper we study optimization from samples of convex functions. There are many scenarios in which we do not know the function we wish to optimize but can learn it from data. In such cases, we are interested in bounding the number of samples required to optimize the function. Our main result shows that in general, the number of samples required to obtain a non-trivial approximation to the optimum of a convex function is exponential in its dimension, even when the function is PAC-learnable. We also obtain strong lower bounds for strongly convex and Lipschitz continuous functions. On the positive side, we show that there are interesting classes of functions and distributions for which the sample complexity is polynomial in the dimension of the function.
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملOptimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملConvex Matroid Optimization
We consider a problem of optimizing convex functionals over matroid bases. It is richly expressive and captures certain quadratic assignment and clustering problems. While generally NP-hard, we show it is polynomial time solvable when a suitable parameter is restricted.
متن کامل